

Seattle Tacoma Portland 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 1250 Pacific Avenue, Suite 701 | Tacoma, WA 98402 | 253.383.2797 101 SW Main Street, Suite 280 | Portland, OR 97204 | 503.232.3746

www.pcs-structural.com

STRUCTURAL CALCULATIONS

FOR

MERCER ISLAND RESIDENCE DRIVEWAY SOLDIER PILE WALL 6838 96TH AVE SE MERCER ISLAND, WA 98040

PREPARED BY PCS STRUCTURAL SOLUTIONS

NOVEMBER 30, 2023 21-201

	Project:		_ Job No:
	Subject:	Sheet	_ Name:
Structural Solutions	Originating Office: Seattle	Tacoma Portland	Date:

CANTILEVERED SOLDIER PILE RETAINING WALL

General equation for moment balance to determine pile embedment: 0=PaLL*H*S*(H/2+Dm)+Pa*H^2*0.5*S*(H/3+Dm)+Pa*Dia*Wa*H*Dm^2/2+Pa*Dia*Wa*Dm^3/6-Pp*DIA*Wp*Dm^3/6

General equation for shear balance to determine maximum moment height: 0=PaLL*H*S+Pa*H^2/2*S+Pa*Dia*Wa*H*Ds+Pa*Dia*Wa*Ds^2/2-Pp*Dia*Wp*Ds^2/2

Active pressure on wall: Active pressure on pile: L or E surcharge on wall:	40pcf0pcf(below wall)182psf(live load or end)	earthquake)	
Passive pressure at pile:	110 pcf		
Spacing of Piles:	8.00 ft oc		
concrete pile diameter: passive width on pile: active width on pile:	1.50ft3.00x1.00xxpile diameter	F _y =psi Fb =psi S pile = M/Fb	Fb = 0.6 Fy

Total drilling depth = H+Dm

		Moment		Shear		Steel Pile Demand		Steel Pile Selection]
н	equation	Dm	H+Dm	equation	Ds	М	S	Steel	S	I		
ft	set to 0	feet	feet	set to 0	feet	ft-k	in ³	Section	in ³	in ⁴		
5.5	0	13.5	19.0	8888	4.0	77	31	W8X40	36	146	0.113	
2.5	0	8.0	10.5	680	4.0	19	7	W8X40	36	146	0.007	

Project: Mercer Island Residence Job No: 21201 Name: ____ Subject: Sheet Originating Office: X Seattle Tacoma Portland Date: **Structural** Solutions Check Assume P.P.T. 10×6 jging0 Ň 71-6u HACTIVE = (5.5) (40 pcf) (5.5') = 101 plf $E = \left(\frac{5.5}{12}\right) \left(18 * 5.5^{\circ}\right) = 45.4 plf$ $L = \left(\frac{5.5}{17}\right) (250 \text{ psf}) (0.33) = 37.8 \text{ plf}$ 6x6 OK - SEE ENEPCALC

Project Title:MERCER ISLAND RESIDENCEEngineer:AEDProject ID:21-201Project Descr:

Wood Beam			Project	File: Lagging.ec6
LIC# : KW-06014122, Build:20.23.08.30 DESCRIPTION: Driveway Soldier Pile Wall - L	PCS STRUCTURAL SOLUTIONS		(c) ENER	CALC INC 1983-2023
CODE REFERENCES				
Calculations per NDS 2018, IBC 2018, CBC 2019, A Load Combination Set : IBC 2018	SCE 7-16			
laterial Properties				
Analysis Method : Allowable Stress Design Load Combination : IBC 2018 Wood Species : Hem-Fir	Fb + Fb - Fc - Prll Fc - Perp Fv	975.0 psi 975.0 psi 850.0 psi 405.0 psi	<i>E : Modulus of Elas</i> Ebend- xx Eminbend - xx	<i>ticity</i> 1,300.0ksi 470.0ksi
Wood Grade : No.1 Beam Bracing : Completely Unbraced	Ft	650.0 psi	Density	26.840 pcf
	L (0.0380) E(0.0460) H(0.1010)			
×				×
	6x6			×
	Span = 7.50 ft			
4				
pplied Loads	Service loads	entered. Load	Factors will be applied	for calculations.
Beam self weight NOT internally calculated and add Loads on all spans Uniform Load on ALL spans : L = 0.0380, E = 0.	ed .0460, H = 0.1010 k/ft			
ESIGN SUMMARY				Design OK

Maximum Bending Stress Ratio Section used for this span	=	0.542 1 6x6	Maximum S Sectior	hear Stress Ratio	=	0.210:1 6x6
fb: Actual	=	422.95psi		fv: Actual	=	22.83 psi
F'b	=	780.00psi		F'v	=	108.64 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+L+H 3.750ft Span # 1	Load C Locatio Span #	ombination n of maximum on span where maximum occurs	= =	+L+H 7.062 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	ction n	0.039 in Ratio = 0 in Ratio = 0.130 in Ratio = 0 in Ratio =	2315>=360 0<360 693>=180 0<180	Span: 1 : E Only n/a Span: 1 : +0.750L+0.525 n/a	50E+H	

Maximum Forces & Stresses for Load Combinations

Load Combination		Max St	ress Ra	tios								Moment	Values		Sh	ear Valu	Jes
Segment Length	Span #	М	V	CD	СМ	Ct	CLx	C _F	Cfu	с _і	C r	М	fb	F'b	V	fv	F'v
H Only														0.0	0.00	0.0	0.0
Length = 7.50 ft	1	0.438	0.170	0.90	1.00	1.00	1.00	1.000	1.00	0.80	1.00	0.71	307.3	702.0	0.33	16.6	97.8
+L+H					1.00	1.00	1.00	1.000	1.00	0.80	1.00			0.0	0.00	0.0	0.0
Length = 7.50 ft	1	0.542	0.210	1.00	1.00	1.00	1.00	1.000	1.00	0.80	1.00	0.98	423.0	780.0	0.46	22.8	108.6
+0.750L+H					1.00	1.00	1.00	1.000	1.00	0.80	1.00			0.0	0.00	0.0	0.0
Length = 7.50 ft	1	0.404	0.157	1.25	1.00	1.00	1.00	1.000	1.00	0.80	1.00	0.91	394.0	975.0	0.43	21.3	135.8
+0.70E+H					1.00	1.00	1.00	1.000	1.00	0.80	1.00			0.0	0.00	0.0	0.0
Length = 7.50 ft	1	0.325	0.126	1.60	1.00	1.00	1.00	1.000	1.00	0.80	1.00	0.94	405.3	1,248.0	0.44	21.9	173.8
+0.750L+0.5250E+H	ł				1.00	1.00	1.00	1.000	1.00	0.80	1.00			0.0	0.00	0.0	0.0

Project Title:MERCER ISLAND RESIDENCEEngineer:AEDProject ID:21-201Project Descr:Project Descr:

Wood Beam

LIC# : KW-06014122, Build:20.23.08.30 PC

PCS STRUCTURAL SOLUTIONS

Project File: Lagging.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Driveway Soldier Pile Wall - Lagging

Maximum Forces & Stresses for Load Combinations

Load Combination		Max S	tress Ra	tios								Moment	Values		Sh	ear Valu	Jes
Segment Length	Span #	М	V	CD	СМ	C _t (CLx	C _F	Cfu	с _і	Cr	М	fb	F'b	V	fv	F'v
Length = 7.50 ft	1	0.375	0.145	1.60	1.00	1.00	1.00	1.000	1.00	0.80	1.00	1.08	467.5	1,248.0	0.51	25.2	173.8
+0.60H					1.00	1.00	1.00	1.000	1.00	0.80	1.00			0.0	0.00	0.0	0.0
Length = 7.50 ft	1	0.148	0.057	1.60	1.00	1.00	1.00	1.000	1.00	0.80	1.00	0.43	184.4	1,248.0	0.20	10.0	173.8
+0.70E+0.60H					1.00	1.00	1.00	1.000	1.00	0.80	1.00			0.0	0.00	0.0	0.0
Length = 7.50 ft	1	0.226	0.088	1.60	1.00	1.00	1.00	1.000	1.00	0.80	1.00	0.65	282.4	1,248.0	0.31	15.2	173.8

Overall Maximum Deflections

Span	Max. "-" Defl Loca	tion in Span	Load Combination	Max. "+" Defl Loca	ation in Span
1	0.1298	3.777		0.0000	0.000
		Suppo	rt notation : Far left is #1	Values in KIPS	
	Support 1	Support 2			
nditions	0.576	0.576			
inations	0.576	0.576			
;	0.379	0.379			
	0.379	0.379			
	0.521	0.521			
	0.486	0.486			
	0.500	0.500			
	0.576	0.576			
	0.227	0.227			
	0.348	0.348			
	0.143	0.143			
	0.173	0.173			
	Span 1 Inditions inations	Span Max. "-" Defl Local 1 0.1298 Support 1 Support 1 Inditions 0.576 inations 0.5776 0.379 0.379 0.521 0.486 0.500 0.576 0.227 0.348 0.143 0.173	Span Max. "-" Defl Location in Span 1 0.1298 3.777 Support Support Support 1 Support 2 Inditions 0.576 0.576 inations 0.576 0.576 0.379 0.379 0.379 0.521 0.521 0.521 0.486 0.486 0.500 0.576 0.576 0.576 0.521 0.521 0.521 0.486 0.486 0.500 0.576 0.576 0.576 0.227 0.227 0.227 0.348 0.348 0.143 0.143 0.143 0.143	Span Max. "-" Defl Location in Span Load Combination 1 0.1298 3.777 Support notation : Far left is #1 Support 1 Support 2 nditions 0.576 0.576 inations 0.576 0.576 0.379 0.379 0.379 0.379 0.379 0.521 0.521 0.521 0.521 0.486 0.486 0.486 0.500 0.576 0.227 0.227 0.227 0.227 0.227 0.348 0.348 0.143 0.143 0.173 0.173 0.173 0.173	Span Max. "-" Defl Location in Span Load Combination Max. "+" Defl Location 1 0.1298 3.777 0.0000 Support notation : Far left is #1 Values in KIPS Support 1 Support 2 nditions 0.576 0.576 inations 0.576 0.576 0.379 0.379 0.379 0.521 0.521 0.521 0.486 0.486 0.486 0.500 0.500 0.576 0.227 0.227 0.227 0.348 0.348 0.143 0.143 0.143 0.173

Project: MJ Residence ____ Job No: _21201 Name: ____ Subject: Sheet _ Originating Office: Seattle Tacoma Portland Date: **Structural** Solutions Check Bent PL to Conc. Wall: $R = 0.576 \cdot \left(\frac{12''}{6''}\right) = 1.15 \frac{152}{FT}$ 3" -Bent R -Conc. Wall M= 1.152K · 2" = 2.31 k-in $= \frac{2.3(k-in)}{(12)(5/16)} = 1/.83 \text{ ksz}$ fь Fballow = 36 KSI - 21.6 KSI > 11.83 KSI V 1.67 - 21.6 KSI > 11.83 KSI V prima Actions Actions Anchor Demand Check Prying Action's $\sqrt{\frac{1}{pFu}} = \sqrt{\frac{(1.67)}{15}}$ (2)(1.188) Enp = $t_{no} = 0.23'' \le 0.31''$ $\sqrt{}$ OK 1011 Western Avenue, Suite 810 | Seattle, WA 98104 | 206.292.5076 www.pcs-structural.com Seattle

www.hilti.com

PCS STRUCTURAL SOLUTIONS	Page:	1
	Specifier:	AED
	E-Mail:	
Bent PL Anchorage - Driveway Wall	Date:	11/27/2023
	PCS STRUCTURAL SOLUTIONS Bent PL Anchorage - Driveway Wall	PCS STRUCTURAL SOLUTIONS Page: Specifier:

Specifier's comments:

1 Input data

Anchor type and diameter:	Kwik Bolt TZ2 - CS 5/8 (4) hnom3	
Item number:	2210272 KB-TZ2 5/8x5 1/2	
Effective embedment depth:	$h_{ef,act}$ = 4.000 in., h_{nom} = 4.500 in.	♦ safe
Material:	Carbon Steel	v set
Evaluation Service Report:	ESR-4266	
Issued I Valid:	12/17/2021 12/1/2023	
Proof:	Design Method ACI 318-14 / Mech	
Stand-off installation:		
Profile:		
Base material:	cracked concrete, 4000, $f_{\rm c}^{\prime}$ = 4,000 psi; h = 8.000 in.	
Installation:	hammer drilled hole, Installation condition: Dry	
Reinforcement:	tension: condition B, shear: condition B; no supplemen	tal splitting reinforcement present
	edge reinforcement: none or < No. 4 bar	

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

PCS STRUCTURAL SOLUTIONS	Page:	2
	Specifier:	AED
	E-Mail:	
Bent PL Anchorage - Driveway Wall	Date:	11/27/2023
	PCS STRUCTURAL SOLUTIONS Bent PL Anchorage - Driveway Wall	PCS STRUCTURAL SOLUTIONS Page: Specifier: Specifier: I E-Mail: Bent PL Anchorage - Driveway Wall Date:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 2,800; $V_x = 0; V_y = 0;$	no	51
		$M_x = 0; M_y = 0; M_z = 0;$		

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com						
Company:	PCS STRUCTURAL SOLUTIONS	Page:	3			
Address:		Specifier:	AED			
Phone I Fax:		E-Mail:				
Design:	Bent PL Anchorage - Driveway Wall	Date:	11/27/2023			
Fastening point:						

2 Proof I Utilization (Governing Cases)

			Design values [lb]		Utilization	
Loading	Proof		Load	Capacity	β _N / β _V [%]	Status
Tension	Concrete Breakout	Failure	2,800	5,591	51 / -	OK
Shear	-		-	-	- / -	N/A
Loading		β _N	β _v	ζ	Utilization β _{N,V} [%]	Status
Combined tension and shear loads		-	-	-	-	N/A

3 Warnings

· Please consider all details and hints/warnings given in the detailed report!

Fastening meets the design criteria!

www.hilti.com						
Company:	PCS STRUCTURAL SOLUTIONS	Page:	4			
Address:		Specifier:	AED			
Phone I Fax:		E-Mail:				
Design:	Bent PL Anchorage - Driveway Wall	Date:	11/27/2023			
Fastening point:						

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.